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ABSTRACT

Nuclear magnetic resonance spectroscopy is a powerful technique that helps to determine the structures of 
biomolecules. Since the 1980s when nuclear magnetic resonance began to be applied in the determination 
of nucleic acid structures, it has been used to study aptamer structures and aptamer–target interactions. 
Nuclear magnetic resonance spectroscopy has revealed that aptamers adopt characteristic conformations 
and bind specifically to their targets. It is not easy to determine the structure of aptamers by nuclear magnetic 
resonance, especially in the case of aptamer–large target molecule complexes. However, nuclear magnetic 
resonance provides useful information about aptamers, even when their structure cannot be determined. 
This review includes the studies in which nuclear magnetic resonance spectroscopy was employed recently to 
analyse aptamers in several ways in addition to analysing them for structure determination.
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INTRODUCTION

Aptamers are single-stranded oligonucleotides that often 
exhibit high affinity for and specificity to their target mol-
ecules, which could be peptides, proteins, whole cells 
or small molecules (e.g., nucleotides and amino acids). 
Aptamers are selected from large pools of randomized 
oligonucleotide libraries (approximately 1015 variants) by 
Systematic Evolution of Ligands by Exponential Enrichment 
(SELEX) (Darmostuk et al, 2015). Because of their high 
specificity for and affinity to their target molecules, similar 
to an antibody binding to its antigen, aptamers could be 
used as research reagents and in diagnostics and therapeu-
tics. The binding of an aptamer to its target depends on 
the nature of the target and on the nucleotide sequence 
and 3D structure of the aptamer; therefore, structural and 
biophysical studies are necessary to understand the cause 
of the high affinity and specificity and would accelerate the 
use of aptamers in research, diagnostics and therapeutics.

X-ray crystallography and nuclear magnetic resonance 
(NMR) spectroscopy have been used to study the three-

dimensional structures of biomolecules. Each method 
has its advantages and limitations. Determination of high-
resolution structures using NMR spectroscopy is limited 
to relatively small molecules (<30-40 kDa) because of the 
overlap and broadening of NMR signals. On the other hand, 
structures of arbitrarily large molecules can be determined 
by X-ray crystallography, but only if the crystals provide 
suitable quality of diffraction data. Indeed, a significant 
degree of trial and error is still required to determine the 
conditions that yield well-diffracting crystals (Chayen and 
Saridakis, 2008). Furthermore, crystallization of oligonucle-
otides is usually more difficult than that of proteins. There-
fore, the structures of many aptamers, which lie within the 
30–50-mer range and bind to small target molecules, have 
been determined using NMR. On the other hand, the crys-
tal structures of aptamer–large target molecule complexes 
have been determined by X-ray crystallography (Nomura 
et al, 2010; Gelinas et al, 2016; Bjerregaard et al, 2016).

NMR analysis, like X-ray crystallography, usually requires 
a large amount of sample; however, it does not require 
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crystallization. Therefore, NMR signals that contain struc-
tural information can be obtained quickly, although it takes 
a significant amount of time to analyse them in order to 
determine the structure. This review includes the studies 
in which NMR spectroscopy was employed recently to ana-
lyse aptamers in several ways in addition to analysing them 
for structure determination.

SOLUTION STRUCTURE DETERMINATION

The sequential assignment of NMR signals using 13C/15N-
labelled protein and triple-resonance experiments is an 
already established method. Moreover, the entire pro-
cess, from signal assignment to structure determination, 
is  automated. However, the determination of nucleic acid 
structure using 13C/15N-labelled nucleic acid and hetero-
nuclear multidimensional NMR, which was developed in 
the early 1990s, is still under development (Barnwal et 
al, 2017). Therefore, in the 1990s, NMR spectroscopy was 
used to determine the aptamer structures with a range 
of ligands including the cofactors ATP (Dieckmann et al, 
1996; Jiang et al, 1996) and FMN (Fan et al, 1996), the 
amino acids L-arginine and L-citrulline (Yang et al, 1996), 
and the aminoglycoside antibiotic tobramycin (Jiang et al, 
1997b) (Table 1); NMR spectroscopy was successfully 
applied in the  determination of these structures as the 

RNA  conformations were fixed in defined compact confor-
mations when bound to high-affinity ligands, resulting in 
analysable narrow NMR signals.

The structure determination of aptamer–protein com-
plexes using NMR spectroscopy is not easy due to signal 
broadening; therefore, free-form structures have been 
determined for those aptamers whose targets are proteins. 
Comparisons of unbound-form aptamer structures with 
their bound–form structures, determined by X-ray crys-
tallography, revealed that the conformation of aptamers 
changed upon binding, although only two cases has been 
reported to date (Figure 1A and B) (Huang et al, 2003; 
Reiter et al, 2008; Davlieva et al, 2014); however, no such 
conformational change was observed in the  target proteins 
involved (Bjerregaard et al, 2016; Gelinas et al, 2016). These 
 structural comparisons between free and bound forms 
reveal that aptamers undergo an induced fit upon binding 
to target proteins and exhibit great plasticity in terms of 
accommodating the optimal conformations required for 
complex formation.

However, one interesting example of an aptamer whose 
conformation remained almost unchanged upon peptide 
binding was provided by Mashima and colleagues who 
reported that the anti-prion aptamer folded into a unique 

Table 1. NMR structures of aptamersa.
Target Free or complex DNA or RNA Author, year
thrombin free DNA Schultze et al, 1994

Marathias et al, 1996
FMN complex RNA Fan et al, 1996
L-arginine complex RNA Yang et al, 1996
L-citrulline complex RNA Yang et al, 1996
ATP complex (AMP)b RNA Dieckmann et al, 1996

Jiang et al, 1996
ATP complex (AMP) DNA Lin et al, 1997
HIV-1 Rev peptide complex RNA Ye et al, 1996
tobramycin complex RNA Jiang et al, 1997
L-arginineamide complex DNA Lin et al, 1998

Robertson et al, 2000
neomycin B complex RNA Jiang et al, 1999
HTLV-1 Rex peptide complex RNA Jiang et al, 1999
HIV-1 Tat protein complex (L-arginineamide) RNA Matsugami et al, 2003
malachite green complex RNA Flinders et al, 2004
eIF4A free (partial) RNA Sakamoto et al, 2005
GTP complex RNA Carothers et al, 2006
TAR RNA complex modified nucleic acid Lebars et al, 2007
NF-κB free RNA Reiter et al, 2008
TAR RNA complex RNA Van Melckebeke et al, 2008
bovine prion free RNA Mashima et al, 2009
mucin 1 free DNA Baouendi et al, 2012
AML1 Runt domain free (partial) RNA Nomura et al, 2013
bovine prion complex (peptide) RNA Mashima et al, 2013
VEFG free modified nucleic acid Marušič et al, 2013 
ribosomal protein S8 free RNA Davlieva et al, 2014
GTP complex RNA Wolter et al, 2017
thrombin free modified nucleic acid Lietard et al, 2017

aOnly aptamers obtained by SELEX are listed.
bIn parentheses, the complex partner or the partial structure, in the case of free form structures.



15

©The Author(s) | Aptamers | 2017 | Volume 1 | 13–18 | OPEN ACCESS | ISSN 2514-3247

quadruplex structure in both the free and peptide-bound 
forms (Figure 1C) (Mashima et al, 2009; Mashima et al, 
2013). In the structures, the aptamer formed a dimer and 
each monomer simultaneously bound itself to two por-
tions of the N-terminal peptide of the prion protein. In 
this case, it was the disordered peptide that underwent 
an induced fit to the rigid quadruplex structure of the 
aptamer.

SECONDARY STRUCTURE ANALYSIS

Tertiary structure determination of nucleic acids is com-
plicated when there is a high degree of overlap between 
signals. However, imino proton signals of guanosine, uri-
dine and thymidine residues are observed between 10 and 
-15ppm and resolve well compared with other signals, and 
these imino proton signals provide valuable information 
about base pairing in nucleic acid molecules. These sig-
nals are observable when the imino protons are involved 
in hydrogen bonding or are protected from exchange with 
bulk solvent water. Thus, Watson–Crick base pairs (G–C, 
A–U and A–T), non-Watson–Crick base pairs (e.g. G–U or 
G–A), and G-quartets are detected by analysing the imino 
proton spectrum of nucleic acid. Analysis of the exchange 
rate of imino protons could provide more quantitative 
information about the stability of base pairing (Churcher 
et al, 2017).

Increasing the sample temperature causes denaturation 
of the nucleic acid conformation, resulting in the disap-
pearance of the imino proton signals. Therefore, analyses 
of imino proton signals at different temperatures provide 
information about the thermal stability of the aptamer. 
In the case of the aptamer against salivary α-amylase, in 
which (E)-5-(2-(N-(2-(N6-adeninyl)ethyl))carbamylvinyl)-
2′-deoxyuridine-5′-triphosphate (dUadTP) is incorporated 
instead of thymidine-5′-triphosphate (TTP), imino proton 
spectra analysis at different temperatures indicated that 
the aptamer adopts a defined structure and is stable at 
40oC although the signals could not be assigned due to the 
overlapping and broadening (Figure 2) (Minagawa et al, 
2017). Furthermore, the H9N9 imino proton signals of the 
adenine component of Uad were observed in this case. If 
these signals could be assigned, these could be a good 
probe to analyse the local structure of the aptamer.

INTERACTION ANALYSIS

Crystal structures of aptamer–target complexes provide 
precise information on their interactions. However, crystal-
izing aptamers or aptamer–target complexes is difficult, and 
only a few co-crystal structures have been reported over 
the years. With the availability of target protein  structure 
coordinates, interaction analysis using NMR may represent 
a good approach to elucidating the aptamer binding  surface.

In the case of an IgG aptamer, chemical shift perturbation 
analysis of the IgG Fc fragment upon aptamer binding was 
used to determine the binding surface of the Fc fragment 
(Miyakawa et al, 2008). Figure 3A shows the 1H-15N HSQC 

Figure 1. Conformational change of aptamers upon protein 
 binding. (A) NMR structure of the free S8 aptamer (left; PDB ID 
2LUN) and crystal structure of the S8-aptamer complex (right; 
PDB ID 4PDB). (B) NMR structure of the free NF-kB aptamer 
(left; PDB ID 2JWV) and crystal structure of the NF-kB-aptamer 
 complex (right; PDB ID 1OOA). (C) NMR structure of the free 
prion aptamer (left; PDB ID 2RQJ) and NMR structure of the prion 
 peptide-aptamer complex (right; PDB ID 2RSK). Aptamers are 
shown in grey, with the protein or peptide backbones in red. This 
figure was created using UCSF Chimera (Pettersen et al, 2004).

Figure 2. Imino proton spectra of the salivary α-amylase aptamer 
containing dUad. (A) Chemical structures of natural TTP and 
dUadTP. (B) Imino proton spectra of the salivary α-amylase 
aptamer recorded at different temperatures between 10 °C and 
55 °C. Reproduced from Minagawa et al (2017) with permission. 
Copyright 2017 Nature Publishing Group.
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spectra of the 15N-labelled Fc fragment in which some sig-
nals were perturbed upon aptamer binding. The perturbed 
residues are shown in red on the crystal structure of the Fc 
fragment in Figure 3B, and the binding surface, confirmed 
by X-ray crystallography, is shown in Figure 3C (Nomura 
et al, 2010).

Changes in imino proton signals are often used in interac-
tion analyses. Figure 4A shows the imino proton spectra 
of a spermine-binding aptamer in the absence and pres-
ence of spermine (Oguro et al, 2016). Although the addi-
tion of Mg2+ did not affect the spectrum, a drastic change 
was observed upon the addition of spermine. The broad-
ening and disappearance of the signals of the terminal 
stem  suggested that the base pairs of the region opened 
upon binding of spermine. Perturbations of pyrimidine 
H5–H6 signals in TOCSY spectra were also observed upon 
spermine binding,  indicating a conformational change 
( Figure 4B). These chemical shift changes can be mapped 
onto the  secondary structure of the aptamer when the 
 tertiary structure remains to be determined.

PERSPECTIVES

Recently, thermodynamic studies of aptamers using iso-
thermal titration calorimetry (ITC) have been reported 

(Amano R et al, 2016; Neves MAD et al, 2017; Sakamoto 
et al, 2017). From ITC measurement, the thermodynamic 
parameters, including dissociation constant Kd, Gibbs free 
energy change ΔG, enthalpy change ΔH, entropy change 
ΔS, and stoichiometry, can be obtained. Thus, the combi-
nation of NMR and ITC could provide information about 
the mechanisms of the high-affinity binding of aptamers to 
their targets. Neves and colleagues revealed that a cocaine-

Figure 3. Interaction analysis between the Fc fragment of IgG and 
its aptamer. (A) Superposition of the 1H-15N HSQC spectra of 
the 15N-G, I, L, K, T, V, A, M, C, H, W, Y, F, S-labelled Fc fragment 
(black) and that of the aptamer-bound Fc fragment (red). Relevant 
amino acid positions are assigned. (B) Mapping of the amino 
acid residues perturbed upon aptamer addition on the crystal 
structure of the IgG Fc fragment. Amino acids showing NMR 
chemical shifts upon aptamer binding are indicated in red for 
large shifts, orange for medium shifts, and purple for residues that 
were perturbed but not quantitatively assigned due to overlap or 
line broadening of the signals. The assigned residues are marked 
only on one strand of the IgG Fc fragment for clarity. (C) Crystal 
structure of the aptamer-IgG Fc fragment complex. The aptamer 
is shown in red. Panels A and B are  reproduced from Miyakawa et 
al (2008) with permission. Copyright 2008 RNA  Society.  Panel C 
was generated using UCSF Chimera  (Pettersen et al, 2004).

Figure 5. NMR monitoring of the SELEX process. Imino proton 
signals of RNA pools and RNA binding to target proteins are 
 monitored by NMR and then subjected to selection. The addition 
of target molecules can be skipped. Reproduced from Amano 
et al (2017) with permission. Copyright 2017 Nature Publishing 
Group.

Figure 4. NMR spectra of the spermine aptamer. (A) Imino pro-
ton spectra of the aptamer. Bottom: spectrum of the aptamer; 
middle: spectrum of the aptamer in the presence of 1mM 
MgCl2; top: spectrum of the aptamer in the presence of 1mM 
MgCl2 and 5mM spermine. Assignment is indicated on the 
middle spectrum. Positions of disappeared signals are shaded 
in the secondary structure. Arrow indicates the resonance that 
appeared in the presence of spermine. (B) TOCSY spectra of the 
aptamer (black), in the presence of 1mM MgCl2 (blue), and 1mM 
spermine with MgCl2 (red). Reproduced from Oguro et al (2016) 
with the permission of Oxford University Press.
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binding aptamer binds two molecules of its ligand in buffer 
conditions of low NaCl concentration using ITC. Finally, they 
showed the location of the binding site using NMR. Moreo-
ver, in-cell NMR has been developed to obtain information 
on the structure, dynamics and interaction of proteins and 
nucleic acids in living cells (Bao H-L et al, 2017; Yamaoki 
et al, 2017). Therefore, in-cell NMR may represent a prom-
ising approach in the analysis of the structure–function 
 relationship of aptamers in living cells.

The use of NMR spectroscopy to monitor the enrichment 
of aptamers during SELEX has been reported (Amano et al, 
2017). NMR monitoring is simpler and faster than surface 
plasmon resonance (SPR) or high-throughput sequencing 
(HTS), which are usually used for monitoring the SELEX 
process. While SPR and HTS require 2–3 days for sample 
preparation and 1 day for measurement, a 1D imino pro-
ton spectrum of an RNA pool can be measured within 1 or 
2hr without extra sample preparation (Figure 5). RNA pools 
can be used for NMR measurement following transcription 
and purification. The RNA pools can then be recovered and 
directly used for selection. Furthermore, target binding of 
the pool can be analysed during monitoring by addition 
of the target to the NMR tube. Further development of the 
NMR monitoring method would enhance the efficiency of 
aptamer development.

CONCLUSIONS

Since the 1990s, NMR has been used to study aptamer 
structures and aptamer–target interactions. NMR studies 
have revealed that aptamers adopt characteristic confor-
mations and bind to their targets. Furthermore, even when 
it has not been possible to determine the structure, NMR 
has provided abundant information about the conforma-
tions and binding properties of aptamers. Recently, the 
sensitivity of NMR has been improved and new techniques 
to obtain new information of samples have been devel-
oped (Barnwal et al, 2017; LeBlanc et al, 2017; Nußbaumer 
et al, 2017). NMR will contribute more to the development 
of aptamers in the future.
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LIST OF ABBREVIATIONS

NMR: Nuclear Magnetic Resonance
SELEX: Systematic Evolution of Ligands by EXponential 
enrichment
ATP: Adenosine-5′-TriPhosphate
FMN: Flavin MonoNucleotide
dUadTP: (E)-5-(2-(N-(2-(N6-adeninyl)ethyl))carbamylvinyl)-
2′-deoxyUridine-5′-TriPhosphate
TTP: Thymidine-5′-TriPhosphate
IgG: Immunoglobulin G

Fc: Fragment crystallizable
HSQC: Heteronuclear Single Quantum Coherence
TOCSY: TOtally Correlated SpectroscopY
ITC: Isothermal Titration Calorimetry
SPR: Surface Plasmon Resonance
HTS: High Throughput Sequencing.
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